TEMA 6 - LÍMITES, CONTINUIDAD, ASÍNTOTAS

6.1 – LÍMITE DE UNA FUNCIÓN

6.1.1 – LÍMITE DE UNA FUNCIÓN EN UN PUNTO

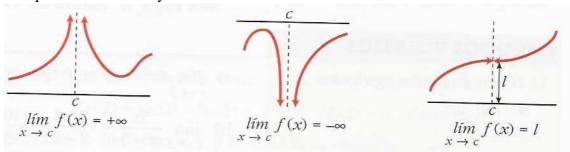
Límite de una función en un punto

 $\lim_{x\to c} f(x) = \ell \quad \text{ Se lee: El límite cuando } x \text{ tiende a } c \text{ de } f(x) \text{ es } \ell$

Significa: ℓ es el valor al que se aproxima f(x) cuando x se aproxima a c

Notas:

- Que x se aproxima a "c" significa que toma valores muy cerca de "c" (Se puede acercar por la izquierda o por la derecha).
- ℓ puede ser $+\infty$ ó $-\infty$ y entonces $\mathbf{x} = \mathbf{c}$ es una asíntota vertical.

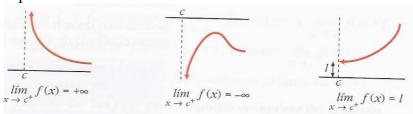


Límites laterales de una función en un punto

• Límite por la derecha:

 $\lim_{x\to c^+} f(x) = \ell$ Se lee: El límite cuando x tiende a c por la derecha de f(x) es ℓ

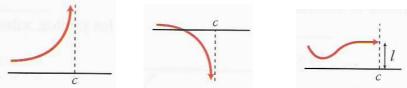
Significa: ℓ es el valor al que se aproxima f(x) cuando x se aproxima a c por la derecha.



• Límite por la izquierda:

 $\lim_{x\to c^-} f(x) = \ell$ Se lee: El límite cuando x tiende a c por la izquierda de f(x) es ℓ

Significa: ℓ es el valor al que se aproxima f(x) cuando x se aproxima a c por la izquierda.



Existen del límite

Para que exista el límite de una función en un punto es necesario que existan los dos límites laterales y sean iguales.

6.1.2 – LÍMITES EN EL INFINITO

 $\lim_{x \to +\infty} f(x) = +\infty$ Se lee: El límite cuando x tiende a más infinito de f(x) es más infinito

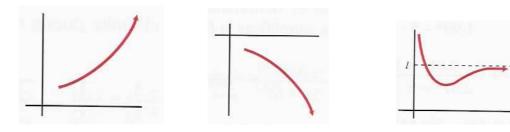
Significa: la función toma valores grandes positivos cuando la x toma valores grandes positivos. (1º cuadrante)

 $\lim_{x \to +\infty} f(x) = -\infty$ Se lee: El límite cuando x tiende a más infinito de f(x) es menos infinito.

Significa: la función toma valores grandes negativos cuando la x toma valores grandes positivos. (4º cuadrante)

 $\lim_{x \to +\infty} f(x) = \ell$ Se lee: El límite cuando x tiende a más infinito de f(x) es ℓ

Significa: ℓ es el valor al que se aproxima f(x) cuando x toma valores muy grandes positivos: $y = \ell$ es una asíntota vertical.



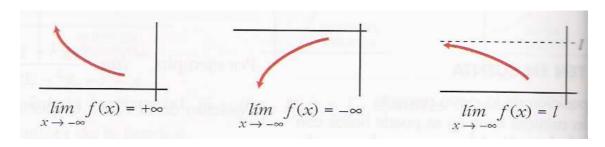
 $\lim_{x \to -\infty} f(x) = +\infty$ Se lee: El límite cuando x tiende a menos infinito de f(x) es más infinito

Significa: la función toma valores grandes positivos cuando la x toma valores grandes negativos. (2º cuadrante)

 $\lim_{x \to -\infty} f(x) = -\infty$ Se lee: El límite cuando x tiende a menos infinito de f(x) es menos infinito.

Significa: la función toma valores grandes negativos cuando la x toma valores grandes negativos. (3º cuadrante)

 $\lim_{x\to-\infty} f(x) = \ell$ Se lee: El límite cuando x tiende a menos infinito de f(x) es ℓ Significa: ℓ es el valor al que se aproxima f(x) cuando x toma valores muy grandes negativos: $\mathbf{y} = \ell$ es una asíntota vertical.



6.1.3 - CÁLCULO DE LÍMITES

1 -Se sustituye la "x" por el valor al que tiende

a)
$$\lim_{x\to 3} x^2$$

b)
$$\lim_{x \to 2} \frac{5x}{x - 5}$$

c)
$$\lim_{x\to 7} \sqrt{3x+4}$$

a)
$$\lim_{x \to 3} x^2$$
 b) $\lim_{x \to 2} \frac{5x}{x - 5}$ c) $\lim_{x \to 7} \sqrt{3x + 4}$ d) $\lim_{x \to \frac{\pi}{4}} (\sin x + 3)$ e) $\lim_{x \to 0,1} \log_{10} x$ f) $\lim_{x \to +\infty} 2x^2 - 4x + 7$ g) $\lim_{x \to +\infty} -2x^2 - 4x + 7$ h) $\lim_{x \to -\infty} 2x^2 - 4x + 7$ i) $\lim_{x \to -\infty} -2x^2 - 4x + 7$ j) $\lim_{x \to +\infty} 2x + x^3 - 3$ k) $\lim_{x \to -\infty} 2x + x^3 - 3$ l) $\lim_{x \to +\infty} \frac{1}{3x}$ m) $\lim_{x \to -\infty} -\frac{1}{x^2}$ n) $\lim_{x \to +\infty} \frac{x^3 - 1}{-5}$ n) $\lim_{x \to +\infty} \frac{x^3 - 1}{-5}$

e)
$$\lim_{x\to 0,1}\log_{10}x$$

f)
$$\lim_{x \to +\infty} 2x^2 - 4x + 7$$

g)
$$\lim_{x \to \infty} -2x^2 - 4x + 7$$

h)
$$\lim_{x \to \infty} 2x^2 - 4x + 7$$

i)
$$\lim_{x \to -\infty} -2x^2 - 4x + 7$$

j)
$$\lim_{x \to 0} 2x + x^3 - 3$$

k)
$$\lim 2x + x^3 - 3$$

1)
$$\lim_{n \to \infty} \frac{1}{2\pi}$$

m)
$$\lim_{x \to -\infty} -\frac{1}{x^2}$$

n)
$$\lim_{x \to +\infty} \frac{x^3 - 1}{-5}$$

$$\tilde{n}$$
) $\lim_{x\to-\infty}\frac{x^3-1}{-5}$

2 – Indeterminaciones:

Hallar límites laterales

a)
$$\lim_{x\to 2} \frac{2}{x-2}$$

b)
$$\lim_{x\to 2} \frac{-2}{x-2}$$

c)
$$\lim_{x \to 2} \frac{3}{2-x}$$

$$d) \lim_{x \to 2} \frac{-3}{2 - x}$$

e)
$$\lim_{x\to 2} \frac{3x}{(x-2)^2}$$

a)
$$\lim_{x \to 2} \frac{2}{x - 2}$$
 b) $\lim_{x \to 2} \frac{-2}{x - 2}$ c) $\lim_{x \to 2} \frac{3}{2 - x}$ d) $\lim_{x \to 2} \frac{-3}{2 - x}$ e) $\lim_{x \to 2} \frac{3x}{(x - 2)^2}$ f) $\lim_{x \to 2} \frac{-3}{(x - 2)^2}$

Factorizar y simplificar

a)
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x^2 + 3x - 10}$$

a)
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x^2 + 3x - 10}$$
 b) $\lim_{x\to 2} \frac{x^3 - 5x^2 + 6x}{x^3 - 7x^2 + 16x - 12}$ c) $\lim_{x\to 3} \frac{x^3 - 5x^2 + 6x}{x^3 - 7x^2 + 16x - 12}$

c)
$$\lim_{x \to 3} \frac{x^3 - 5x^2 + 6x}{x^3 - 7x^2 + 16x - 12}$$

Si grado del numerador > grado del denominado r (El signo depende de los coeficient es de la x de mayor grado del numerador y del denominado r)

 $\frac{\infty}{\infty} \begin{cases} \frac{a}{b} & \text{Si grado del numerador } = \text{grado del denominado } r \text{ (a y b son los coeficient es} \\ & \text{de la x de mayor grado del numerador y del denominado } r \end{cases}$ Si grado del numerador < grado del numerador rSi grado del numerador < grado del denominado r

a)
$$\lim_{x \to \infty} \frac{x^2 - 5x + 3}{3x - 5}$$
 b) $\lim_{x \to \infty} \frac{x^2 + 3}{x^3}$ c) $\lim_{x \to \infty} \frac{3x^2 - 5x + 1}{2x^2 - 5}$ d) $\lim_{x \to \infty} \frac{x^2 + 3}{-x^3}$

b)
$$\lim_{x\to\infty}\frac{x^2+3}{x^3}$$

c)
$$\lim_{x\to\infty} \frac{3x^2 - 5x + 1}{2x^2 - 5}$$

$$d) \lim_{x \to \infty} \frac{x^2 + 3}{-x^3}$$

∞ - ∞ Se hacen operaciones. Cuando aparecen radicales, multiplicamos y dividimos por la expresión conjugada.

a)
$$\lim_{x \to \infty} \left(\frac{1}{x} - \frac{2x}{x^2 + 1} \right)$$
 b) $\lim_{x \to 0} \frac{1 - \sqrt{1 - x}}{x}$

b)
$$\lim_{x\to 0} \frac{1-\sqrt{1-x}}{x}$$

1°: Tipo número e : Aplicar :
$$\lim_{x \to \begin{cases} a \\ \infty \end{cases}} \left(1 + \frac{1}{f(x)}\right)^{f(x)} = e$$
 ó

$$\lim_{x\to a} f(x)^{g(x)} = e^{\lim_{x\to a} g(x).[f(x)-1]}$$

- 3- En funciones definidas a trozos, en los puntos donde esté definida de distinta forma si me aproximo por valores más pequeños, que por valores más grandes, habrá que hacer límites laterales.
- a) Dada la función $f(x) = \begin{cases} 2x 5 & \text{si } x < 3 \\ -x + 7 & \text{si } x \ge 3 \end{cases}$ Calcular su límite en los puntos 3,1, 7

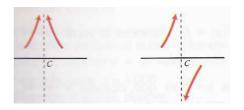
6. 2 – ASÍNTOTAS Y RAMAS INFINITAS

Asíntotas verticales: $x = c y \rightarrow \infty$

Cálculo: Puntos que anulan el denominador

Puntos que anulan lo que está dentro del logaritmo

Aproximación: Calcular los límites laterales $\begin{cases} -\infty & \text{Por abajo} \\ +\infty & \text{Por arriba} \end{cases}$

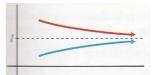


Asíntotas horizontales: $x \rightarrow \infty$ y = b (Grado numerador \leq Grado denominador)

Cálculo:
$$\lim_{x \to \infty} f(x) = b$$

< b Por debajo Aproximación: f(± 1000)

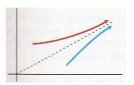
> b Por encima



Asíntotas oblicuas: y = mx + n (Grado Numerador – Grado denominador = 1)

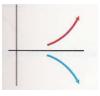
Cálculo:
$$m = \lim_{x \to \infty} \frac{f(x)}{x}$$
; $n = \lim_{x \to \infty} (f(x) - mx)$

< Asíntota(±1000) Por debajo Aproximación: f(± 1000) $> (\pm 1000)$ Por encima



RAMAS INFINITAS (Grado Numerador – Grado denominador ≥ 2)

Cálculo: $\lim_{x \to \infty} f(x) = \pm \infty$



a)
$$y = \frac{x^2 - 5x + 7}{x - 2}$$

b) $y = \frac{x^2 + 1}{x^2 - 2x}$
c) $y = \frac{2x}{x^2 + 2x}$
d) $y = \frac{3x - 5}{x^2 + 3x + 2}$
e) $y = \frac{x^2 + 1}{x^2 - 2x}$
f) $y = \frac{x^3 - 5x^2}{-x + 3}$

b)
$$y = \frac{x^2 + 1}{x^2 - 2x}$$

$$c) y = \frac{2x}{x^2 + 2x}$$

d)
$$y = \frac{3x-5}{x^2+3x+2}$$

e)
$$y = \frac{x^2 + 1}{x^2 - 2x}$$

f)
$$y = \frac{x^3 - 5x^2}{-x + 3}$$

6.3 - CONTINUIDAD

La idea de función continua es la de que "puede ser construida con un solo trazo".

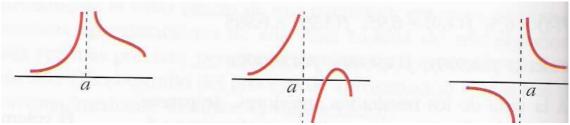
Una función f(x) es continua en el punto x = a si $\lim f(x) = f(a)$

Todas las funciones definidas por expresiones analíticas elementales (es decir, todas las que conocemos hasta ahora, exceptuando las funciones a trozos), son continuas en todos los puntos de su dominio.

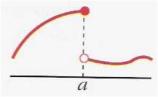
Las funciones a trozos habrá que estudiarlas en los extremos de sus trozos que pertenezcan al dominio.

Tipos de discontinuidades

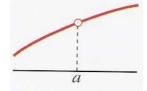
Discontinua inevitable de salto infinito: Si alguno de los límites laterales es infinito o no existe.

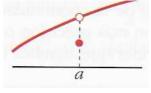


Discontinua inevitable de salto finito: Si los dos límites laterales son finitos pero distintos. El salto es la diferencia, en valor absoluto, de los límites laterales.



Discontinua evitable: Si los dos límites laterales son finitos e iguales, pero su valor no coincide con f(a) o no existe f(a)





a)
$$y = x^2 - 5$$

b)
$$y = \frac{x^2 - 3}{x}$$

$$c) y = \frac{x+2}{x-3}$$

e)
$$y = \sqrt{x+2}$$

a)
$$y = x^2 - 5$$
 b) $y = \frac{x^2 - 3}{x}$ c) $y = \frac{x + 2}{x - 3}$ d) logely $y = \sqrt{x + 2}$ f) $y = \begin{cases} 3x - 4 & \text{si } x < 3 \\ x + 1 & \text{si } x \ge 3 \end{cases}$ g) $y = \begin{cases} 3 & \text{si } x \ne 4 \\ 1 & \text{si } x = 4 \end{cases}$

g)
$$y = \begin{cases} 3 & \text{si } x \neq 4 \\ 1 & \text{si } x = 4 \end{cases}$$

h) Calcular el valor de n para que la función $f(x) = \begin{cases} x^2 - 5x + 1 & \text{si } x \le 4 \\ 2x + n & \text{si } x > 4 \end{cases}$ sea continua en todo R.

i) Calcular k para que
$$y = \begin{cases} x^3 - 2x + k & \text{si } x \neq 3 \\ 7 & \text{si } x = 3 \end{cases}$$
 sea continua en R