Matrices

Concepto de matriz

Se denomina **matriz** a todo conjunto de números o expresiones ordenados en filas y columnas.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{pmatrix}$$

Cada uno de los números de que consta la **matriz** se denomina **elemento**. Un elemento se distingue de otro por la posición que ocupa, es decir, la **fila** y la **columna** a la que pertenece.

El número de filas y columnas de una matriz se denomina **dimensión** de una matriz. Así, una matriz será de dimensión: 2x4, 3x2, 2x5,... El primer número es el indicativo del número filas y el segundo el de columnas. Sí la matriz tiene el mismo número de filas que de columna, (es cuadrada) se dice que es de orden: 2, 3, ...

El conjunto de **matrices** de **m filas** y **n columnas** se denota por A_{mxn} . Un **elemento** cualquiera de la misma que se encuentra en la fila i y en la columna j se denota por por a_{ij} .

Dos **matrices** son **iguales** cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas, son iguales.

Tipos de matrices

Matriz fila

Una matriz fila está constituida por una sola fila.

$$(2 \ 3 \ -1)$$

Matriz columna

La matriz columna tiene una sola columna

$$\begin{bmatrix} -7 \\ 1 \\ 6 \end{bmatrix}$$

Matriz rectangular

La matriz rectangular tiene distinto número de filas que de columnas, siendo su dimensión mxn.

$$\begin{pmatrix} 1 & 2 & 5 \\ 9 & 1 & 3 \end{pmatrix}$$

Matriz cuadrada

La **matriz cuadrada** tiene el mismo número de filas que de columnas.

Los elementos de la forma **a**_{ii} constituyen la **diagonal principal**.

La diagonal secundaria la forman los elementos con $\mathbf{i}+\mathbf{j}=\mathbf{n}+\mathbf{1}$.

$$\begin{pmatrix}
1 & 2 & -5 \\
3 & 6 & 5 \\
0 & -1 & 4
\end{pmatrix}$$

Matriz nula

En una matriz nula todos los elementos son ceros.

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Matriz triangular superior

En una **matriz triangular superior** los elementos situados por debajo de la diagonal principal son ceros.

$$\begin{pmatrix}
1 & 7 & -2 \\
0 & -3 & 4 \\
0 & 0 & 2
\end{pmatrix}$$

Matriz triangular inferior

En una **matriz triangular inferior** los elementos situados por encima de la diagonal principal son ceros.

Matriz diagonal

En una **matriz diagonal** todos los elementos situados por encima y por debajo de la diagonal principal son nulos.

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

Matriz escalar

Una **matriz escalar** es una matriz diagonal en la que los elementos de la diagonal principal son iguales.

Matriz identidad o unidad

Una **matriz identidad** es una matriz diagonal en la que los elementos de la diagonal principal son iguales a 1.

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Matriz traspuesta

Dada una matriz A, se llama **matriz traspuesta** de A y se designa por A^t a la matriz que se obtiene cambiando ordenadamente las filas por las columnas

$$A = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 2 & 0 \\ 3 & 5 & 6 \end{pmatrix} \qquad A^{\mathsf{t}} = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 2 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$

Propiedades de la matriz traspuesta

$$(A^t)^t = A$$

$$(A+B)^t = A^t + B^t$$

$$(\alpha \cdot A)^t = \alpha \cdot A^t$$

$$(A \cdot B)^t = B^t \cdot A^t$$

Matriz regular

Una matriz regular es una matriz cuadrada que tiene inversa.

Matriz singular

Una matriz singular es aquella que no tiene inversa.

Matriz idempotente

Una matriz, A, es idempotente si:

$$\mathbf{A}^2 = \mathbf{A}.$$

Matriz involutiva

Una matriz, A, es involutiva si:

$$A^2 = I.$$

Matriz simétrica

Una matriz simétrica es una matriz cuadrada que verifica:

$$A = A^t$$
.

Matriz antisimétrica o hemisimétrica

Una matriz antisimétrica o hemisimétrica es una matriz cuadrada que verifica:

$$A = -A^t$$
.

Matriz ortogonal

Una matriz es ortogonal si verifica que:

$$\mathbf{A} \cdot \mathbf{A}^{\mathbf{t}} = \mathbf{I}$$
.

Suma de matrices

Dadas dos matrices de la misma dimensión, $A=(a_{ij})$ y $B=(b_{ij})$, se define la matriz suma como: $A+B=(a_{ij}+b_{ij})$. Es decir, aquella matriz cuyos elementos se obtienen sumando los elementos de las dos matrices que ocupan la misma posición.

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$A+B = \begin{pmatrix} 2+1 & 0+0 & 1+1 \\ 3+1 & 0+2 & 0+1 \\ 5+1 & 1+1 & 1+0 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 2 \\ 4 & 2 & 1 \\ 6 & 2 & 1 \end{pmatrix}$$

$$A - B = \begin{pmatrix} 2 - 1 & 0 - 0 & 1 - 1 \\ 3 - 1 & 0 - 2 & 0 - 1 \\ 5 - 1 & 1 - 1 & 1 - 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -2 & -1 \\ 4 & 0 & 1 \end{pmatrix}$$

Propiedades de la suma de matrices

Interna:

La suma de dos matrices de orden m x n es otra matriz dimensión m x n.

Asociativa:

$$A + (B + C) = (A + B) + C$$

Elemento neutro:

$$A + 0 = A$$

Donde **O** es la matriz nula de la misma dimensión que la matriz A.

Elemento opuesto:

$$A + (-A) = O$$

La matriz opuesta es aquella en que todos los elementos están cambiados de signo.

Conmutativa:

$$A + B = B + A$$

Producto de un escalar por una matriz

Dada una matriz $\mathbf{A}=(\mathbf{a_{ij}})$ y un número real $\mathbf{k} \in \mathbb{R}$, se define el producto de un número real por una matriz: a la matriz del mismo orden que A, en la que cada elemento está multiplicado por k.

$$kA=(k a_{ii})$$

$$2 \cdot \begin{pmatrix} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 2 \\ 6 & 0 & 0 \\ 10 & 2 & 2 \end{pmatrix}$$

Propiedades

$$a \cdot (b \cdot A) = (a \cdot b) \cdot A$$
 $A \in M_{mxn}, a, b \in \mathbb{R}$

$$a \cdot (A+B) = a \cdot A + a \cdot B A, B \in M_{mxn}, a \in \mathbb{R}$$

$$(a+b)\cdot A=a\cdot A+b\cdot A \qquad A\in M_{mxn}\ ,\ a,\ b\in \mathbb{R}$$

$$1\cdot A=A \qquad \qquad A\in M_{mxn}$$

Producto de matrices

Dos matrices A y B se dicen multiplicables si el número de columnas de A coincide con el número de filas de B. El resultado es una matriz que tiene el número de filas de la primera y el de columnas de la segunda.

$$\mathbf{M}_{\mathbf{m} \mathbf{x} \mathbf{n}} \mathbf{x} \mathbf{M}_{\mathbf{n} \mathbf{x} \mathbf{p}} = \mathbf{M}_{\mathbf{m} \mathbf{x} \mathbf{p}}$$

El elemento c_{ij} de la matriz producto se obtiene multiplicando cada elemento de la fila i de la matriz A por cada elemento de la columna j de la matriz B y sumándolos.

Ej.
$$A \cdot B = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{bmatrix} 2 \cdot 1 + 0 \cdot 1 + 1 \cdot 1 & 2 \cdot 0 + 0 \cdot 2 + 1 \cdot 1 & 2 \cdot 1 + 0 \cdot 1 + 1 \cdot 0 \\ 3 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 & 3 \cdot 0 + 0 \cdot 2 + 0 \cdot 1 & 3 \cdot 1 + 0 \cdot 1 + 0 \cdot 0 \\ 5 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 & 5 \cdot 0 + 1 \cdot 2 + 0 \cdot 1 & 5 \cdot 1 + 1 \cdot 1 + 1 \cdot 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 \\ 3 & 0 & 3 \\ 7 & 3 & 6 \end{bmatrix}$$

Propiedades del producto de matrices

Asociativa:

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

Elemento neutro:

$$A\,\cdot\,I=A$$

Donde I es la matriz identidad del mismo orden que la matriz A.

No es Conmutativa:

$$A\cdot B\neq B\cdot A$$

Distributiva del producto respecto de la suma:

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

Matriz inversa

Se denota por A^{-1} , y es aquella que cumple que: $A \cdot A^{-1} = A^{-1} \cdot A = I$

Propiedades

$$(\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \cdot \mathbf{A}^{-1}$$

$$(A^{-1})^{-1} = A$$

$$(\mathbf{k} \cdot \mathbf{A})^{-1} = \mathbf{k}^{-1} \cdot \mathbf{A}^{-1}$$

$$(A^{t})^{-1} = (A^{-1})^{t}$$

Cálculo por el método de Gauss

Sea A una matriz cuadrada de orden n. Para calcular la matriz inversa de A, que denotaremos como A^{-1} , seguiremos los siguientes pasos:

 $\mathbf{1}^{o}$ Construir una matriz del tipo $\mathbf{M} = (\mathbf{A} \mid \mathbf{I})$, es decir, A está en la mitad izquierda de M y la matriz identidad \mathbf{I} en la derecha.

Consideremos una matriz 3x3 arbitraria

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

La ampliamos con la matriz identidad de orden 3.

$$\begin{pmatrix} 1 & 1 & 0 & \vdots & 1 & 0 & 0 \\ 1 & 0 & 1 & \vdots & 0 & 1 & 0 \\ 0 & 1 & 0 & \vdots & 0 & 0 & 1 \end{pmatrix}$$

 2° Utilizando el método Gauss vamos a transformar la mitad izquierda, A, en la matriz identidad, que ahora está a la derecha, y la matriz que resulte en el lado derecho será la matriz inversa: A^{-1} .

$$\mathbf{F_2} - \mathbf{F_1}$$

$$\begin{pmatrix}
1 & 1 & 0 & \vdots & 1 & 0 & 0 \\
0 & -1 & 1 & \vdots & -1 & 1 & 0 \\
0 & 1 & 0 & \vdots & 0 & 0 & 1
\end{pmatrix}$$

$$\mathbf{F_3} + \mathbf{F_2}$$

$$\begin{pmatrix} 1 & 1 & 0 & \vdots & 1 & 0 & 0 \\ 0 & -1 & 1 & \vdots & -1 & 1 & 0 \\ 0 & 0 & 1 & \vdots & -1 & 1 & 1 \end{pmatrix}$$

$$\mathbf{F}_2 - \mathbf{F}_3$$

$$\begin{pmatrix} 1 & 1 & 0 & \vdots & 1 & 0 & 0 \\ 0 & -1 & 0 & \vdots & 0 & 0 & -1 \\ 0 & 0 & 1 & \vdots & -1 & 1 & 1 \end{pmatrix}$$

$$\mathbf{F_1} + \mathbf{F_2}$$

$$\begin{pmatrix} 1 & 0 & 0 & \vdots & 1 & 0 & -1 \\ 0 & -1 & 0 & \vdots & 0 & 0 & -1 \\ 0 & 0 & 1 & \vdots & -1 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \textbf{-1} & \textbf{F_2} \\ \\ 0 & 1 & 0 & \vdots & 1 & 0 & -1 \\ 0 & 1 & 0 & \vdots & 0 & 0 & 1 \\ 0 & 0 & 1 & \vdots & -1 & 1 & 1 \end{pmatrix}$$

La matriz inversa es:

$$A^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

Rango de una matriz

Rango de una matriz: es el máximo número de filas (o columnas) que son linealmente independientes. El rango por filas o por columnas es el mismo.

Una fila (o columna) es **linealmente dependiente** de otra u otras cuando se puede establecer una combinación lineal entre ellas.

Una fila (o columna) es **linealmente independiente** de otra u otras cuando no se puede establecer una combinación lineal entre ellas.

El rango de una matriz A se simboliza: rang(A) o r(A).

Cálculo por el método de Gauss

Podemos descartar una fila (o columna) si:

- Todos sus coeficientes son ceros.
- Hay dos filas (o columnas) iguales.
- Una fila (o columna) es proporcional a otra.
- Una fila (o columna) es combinación lineal de otras.

Ejemplo:

$$\begin{pmatrix} 1 & 2 & -1 & 3 & -2 \\ 2 & 1 & 0 & 1 & 1 \\ 2 & 4 & -2 & 6 & -4 \\ 0 & 0 & 0 & 0 & 0 \\ 5 & 4 & -1 & 5 & 0 \end{pmatrix}$$

$$F_3 = 2F_1$$

$$F_4 \text{ es nula}$$

$$F_5 = 2F_2 + F_1$$

$$\mathbf{r}(\mathbf{A}) = \mathbf{2}.$$

En general consiste en realizar transformaciones para hacer nulas el máximo número de líneas posible, y el rango será el número de filas no nulas.

$$A = \begin{pmatrix} 1 & -4 & 2 & -1 \\ 3 & -12 & 6 & -3 \\ 2 & -1 & 0 & 1 \\ 0 & 1 & 3 & -1 \end{pmatrix}$$

$$F_2 = F_2 - 3F_1$$

 $F_3 = F_3 - 2F_1$

$$\begin{pmatrix}
1 & -4 & 2 & -1 \\
0 & 0 & 0 & 0 \\
0 & 7 & -4 & 3 \\
0 & 1 & 3 & -1
\end{pmatrix}$$

Por tanto r(A) = 3.