

2. Un enfoque distinto: geometría analítica con vectores

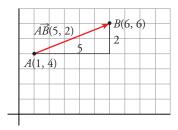
Pág. 1 de 11

VECTORES EN EL PLANO

En un sistema de ejes cartesianos, cada punto se describe mediante sus coordenadas: A(1, 4), B(6, 6).

La flecha que va de A a B se llama **vector** y se representa por \overrightarrow{AB} . Es el vector de **origen** A y **extremo** B.

Al vector \overrightarrow{AB} podríamos describirlo así: desde A avanzamos 5 unidades en el sentido de las X y subimos dos unidades en el sentido de las Y.



Eso se dice más brevemente así: las **coordenadas** de \overrightarrow{AB} son (5, 2). O, mejor, así \overrightarrow{AB} = (5, 2). O, simplemente, así \overrightarrow{AB} (5, 2).

Las coordenadas de un vector se obtienen restando las coordenadas de su origen a las de su extremo:

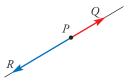
$$B(6, 6), A(1, 4) \rightarrow \overrightarrow{AB} = (6, 6) - (1, 4) = (5, 2)$$

Módulo de un vector, \overrightarrow{AB} , es la distancia de \overrightarrow{A} a \overrightarrow{B} . Se designa así: $|\overrightarrow{AB}|$.

Si las coordenadas de \overrightarrow{AB} son (x, y), entonces $|\overrightarrow{AB}| = \sqrt{x^2 + y^2}$.

Dirección de un vector es la de la recta en la que se encuentra y la de todas sus paralelas.

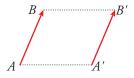
Cada dirección admite dos **sentidos** opuestos.



Por ejemplo, \overrightarrow{PQ} y \overrightarrow{PR} son vectores de sentidos opuestos.

Dos **vectores** son **iguales** cuando tienen el mismo módulo, la misma dirección y el mismo sentido. En tal caso, tienen las mismas coordenadas.

Dos vectores iguales $\overrightarrow{AB} = \overrightarrow{A'B'}$ situados en rectas distintas (y, por tanto, paralelas) determinan un paralelogramo $\overrightarrow{ABB'A'}$.



2. Un enfoque distinto: geometría analítica con vectores

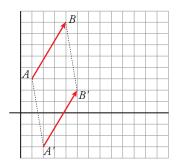
Pág. 2 de 11

VECTORES EN EL PLANO

Aquí tenemos un ejemplo:

A(1, 3), B(4, 8), A'(2, -3), B'(5, 2). Comprueba que los vectores \overrightarrow{AB} y $\overrightarrow{A'B'}$ son iguales.

Representándolos, observamos que tienen el mismo módulo, la misma dirección y el mismo sentido.

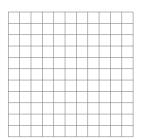


Pero también podemos comprobarlo mediante sus coordenadas:

Coordenadas de \overrightarrow{AB} : $(4, 8) - (1, 3) = (3, 5) \rightarrow \overrightarrow{AB} (3, 5)$ Coordenadas de $\overrightarrow{A'B'}$: $(5, 2) - (2, -3) = (3, 5) \rightarrow \overrightarrow{A'B'} (3, 5)$ $\overrightarrow{AB} = \overrightarrow{A'B'}$

ACTIVIDADES

1 Representa los vectores \overrightarrow{AB} y \overrightarrow{CD} , siendo A(1, 1), B(-2, 7), C(6, 0), D(3, 6) y observa que son iguales. Comprueba que $\overrightarrow{AB} = \overrightarrow{CD}$ hallando sus coordenadas. Calcula su módulo.



Solución:

2 Tenemos tres puntos de coordenadas A(3,-1), B(4,6) y C(0,0). Halla las coordenadas del punto D para que los vectores \overrightarrow{AB} y \overrightarrow{CD} sean iguales.

Solución:	

2. Un enfoque distinto: geometría analítica con vectores

Pág. 3 de 11

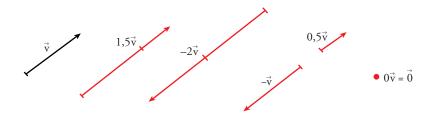
OPERACIONES CON VECTORES

PRODUCTO DE UN VECTOR POR UN NÚMERO

Los vectores se designan también mediante una letra minúscula con una flechita encima. Para ello, se suelen utilizar las letras \vec{u} , \vec{v}

El producto de un número k por un vector \vec{v} es otro vector $k\vec{v}$ que tiene:

- Módulo: igual al producto del módulo de \vec{v} por el valor absoluto de k: $|k\vec{v}| = |k| |\vec{v}|$
- Dirección: la misma que \vec{v} .
- Sentido: el mismo que el de \vec{v} o su opuesto, según k sea positivo o negativo, respectivamente.



El producto $0\vec{v}$ es igual al **vector cero**, $\vec{0}$. Es un vector cuyo origen y extremo coinciden y, por tanto, su módulo es cero. Carece de dirección.

El vector $-1\vec{v}$ se designa por $-\vec{v}$ y se llama **opuesto** de \vec{v} .

Las **coordenadas** del vector $k\vec{v}$ se obtienen multiplicando por k las coordenadas de \vec{v} .

Las coordenadas de $\vec{0}$ son (0, 0). Las coordenadas de $-\vec{v}$ son las opuestas de las coordenadas de \vec{v} .

$$\vec{\mathbf{u}}(x, y) \rightarrow \begin{cases} k\vec{\mathbf{u}}(kx, ky) \\ -\vec{\mathbf{u}}(-x, -y) \\ \vec{\mathbf{0}}(0, 0) \end{cases}$$

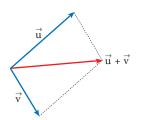
SUMA DE VECTORES

Para **sumar** dos vectores, \vec{u} y \vec{v} , se procede del siguiente modo: se sitúa \vec{v} a continuación de \vec{u} , de manera que el origen de \vec{v} coincida con el extremo de \vec{u} . La suma $\vec{u} + \vec{v}$ es el vector cuyo origen es el de \vec{u} y extremo el de \vec{v} .

 \overrightarrow{u} \overrightarrow{v} \overrightarrow{v} \overrightarrow{v}

Si colocamos \vec{u} y \vec{v} con origen común y completamos un paralelogramo, la diagonal cuyo origen es el de \vec{u} y \vec{v} es el vector suma \vec{u} + \vec{v} .

Las **coordenadas** del vector $\vec{u} + \vec{v}$ se obtienen sumando las coordenadas de \vec{u} con las de \vec{v} . Por ejemplo:



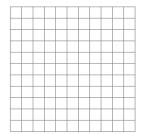
$$\vec{u}(7, -3)$$
, $\vec{v}(4, 5) \rightarrow \vec{u} + \vec{v} = (7 + 4, -3 + 5) = (11, 2)$

2. Un enfoque distinto: geometría analítica con vectores

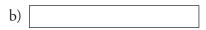
Pág. 4 de 11

ACTIVIDADES

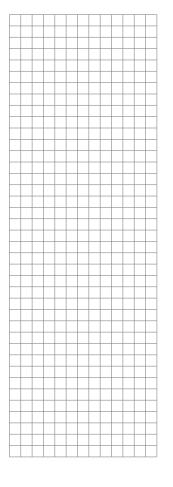
- 1 a) Representa los vectores $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{BC}$, siendo A(1, 3), B(4, 5), C(6, -2). Halla sus coordenadas.
 - b) Representa $\vec{u} + \vec{v}$ y halla sus coordenadas.
 - c) Representa $3\vec{u}$, $-2\vec{u}$ y $0\vec{v}$ y halla sus coordenadas.
 - d) Representa y halla las coordenadas del vector $3\vec{u} 4\vec{v}$.



a)



d)



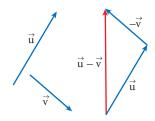
2. Un enfoque distinto: geometría analítica con vectores

Pág. 5 de 11

RESTA DE VECTORES

Para **restar** dos vectores, \vec{u} y \vec{v} , se le suma a \vec{u} el opuesto de \vec{v} :

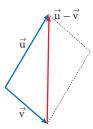
$$\vec{\mathrm{u}} - \vec{\mathrm{v}} = \vec{\mathrm{u}} + (-\vec{\mathrm{v}})$$



Si colocamos \vec{u} y \vec{v} con origen común y completamos un paralelogramo, la diagonal que va del extremo de \vec{v} al extremo de \vec{u} es $\vec{u} - \vec{v}$.

Las **coordenadas** del vector $\vec{u} - \vec{v}$ se obtienen restándole a las coordenadas de \vec{u} las de \vec{v} . Por ejemplo:

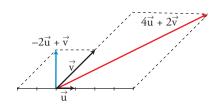
$$\vec{u}(7, -3), \ \vec{v}(4, 5) \rightarrow \vec{u} - \vec{v} = (7 - 4, -3 - 5) = (3, -8)$$



COMBINACIÓN LINAL DE VECTORES

Dados dos vectores, \vec{u} , \vec{v} , y dos números, a, b, el vector $a\vec{u} + b\vec{v}$ se dice que es una **combinación lineal** de \vec{u} y \vec{v} .

Por ejemplo, $4\vec{u} + 2\vec{v}$, $-2\vec{u} + \vec{v}$ son combinaciones lineales de \vec{u} y \vec{v} .



También se pueden formar combinaciones lineales de más de dos vectores. Por ejemplo, $a\vec{u} + b\vec{v} + c\vec{w}$.

Vamos a ver un ejemplo:

Si
$$\vec{u}(7, -4)$$
, $\vec{v}(-5, -2)$ y $\vec{w}(11, 18)$:

- a) Hallar las coordenadas de $3\vec{u} 2\vec{v}$.
- b) Calcular el valor de x e y para que se cumpla la siguiente igualdad: $x\vec{u} + y\vec{v} = \vec{w}$.

a)
$$3\vec{u} - 2\vec{v} = 3(7, -4) - 2(-5, -2) = (21, -12) - (-10, -4) = (21, -12) + (10, 4) = (31, -8)$$

b)
$$x(7, -4) + y(-5, -2) = (11, 18) \Leftrightarrow (7x - 5y, -4x - 2y) = (11, 18) \Leftrightarrow \begin{cases} 7x - 5y = 11 \\ -4x - 2y = 18 \end{cases}$$

La solución de este sistema de ecuaciones es: x = -2, y = -5

Por tanto, $-2\vec{u} - 5\vec{v} = \vec{w}$.

2. Un enfoque distinto: geometría analítica con vectores

Pág. 6 de 11

ACTIVIDADES

1 Dibuja en tu cuaderno dos vectores \vec{u} y \vec{v} que sean, aproximadamente, como los del dibujo, y obtén gráficamente el vector $-5\vec{u} + 3\vec{v}$.

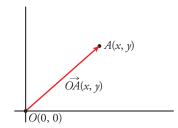
2 $\vec{u}(-5, 8), \vec{v}(-41, -10), \vec{w}(3, 6).$

- a) Halla las coordenadas de $3\vec{u} 2\vec{v} + 10\vec{w}$.
- b) Averigua el valor de x e y para que se cumpla que $x\vec{u} + y\vec{w} = \vec{v}$.
- a)
- b)

VECTORES QUE REPRESENTAN PUNTOS

Si un vector tiene su origen en el punto O (origen de coordenadas), entonces las coordenadas del vector coinciden con las de su extremo.

(coordenadas del vector \overrightarrow{OA}) = (coordenadas del punto A)



Por eso, los puntos del plano pueden ser descritos por vectores con origen en O.

Esta propiedad es muy útil para obtener las coordenadas de puntos a los que se puede llegar mediante un recorrido vectorial.

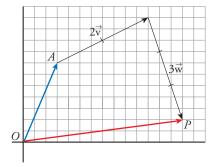
2. Un enfoque distinto: geometría analítica con vectores

Pág. 7 de 11

Fíjate bien en estos dos ejemplos:

EJEMPLO 1

Desde el punto A(3, 7) nos movemos en la dirección de $\vec{v}(4, 2)$ el doble de su longitud. Después nos movemos el triple de $\vec{w}(1, -3)$. ¿A qué punto llegamos?



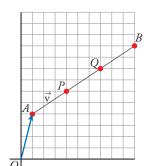
Analíticamente:

$$\overrightarrow{OP} = \overrightarrow{OA} + 2\overrightarrow{v} + 3\overrightarrow{w} = (3, 7) + 2(4, 2) + 3(1, -3) = (14, 2)$$

Puesto que $\overrightarrow{OP}(14, 2)$, las coordenadas de P son (14, 2).

EJEMPLO 2

El segmento cuyos extremos son A(1, 4) y B(10, 10) se divide en tres trozos iguales. ¿Cuáles son las coordenadas de los dos puntos que marcan la partición?



$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (10, 10) - (1, 4) = (9, 6)$$

$$\vec{v} = \frac{1}{3} \vec{AB} = \frac{1}{3} (9, 6) = (3, 2)$$

$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{v} = (1, 4) + (3, 2) = (4, 6)$$

$$\overrightarrow{OQ} = \overrightarrow{OP} + \overrightarrow{v} = (4, 6) + (3, 2) = (7, 8)$$

Por tanto, las coordenadas de P y Q son: P(4, 6), Q(7, 8)

ACTIVIDADES

1 Desde el punto A(8, 9) nos movemos en la dirección de $\overrightarrow{AB}(-1, -2)$ cuatro veces su longitud. Después nos movemos el triple de $\overrightarrow{w}(2, 1)$. Di las coordenadas del punto al que se llega.

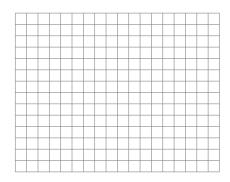
2 Halla el punto medio del segmento de extremos A(1, 4), B(9, 8). Para ello, utiliza el vector $\frac{1}{2} \overrightarrow{AB}$.

2. Un enfoque distinto: geometría analítica con vectores

Pág. 8 de 11

ACTIVIDADES

3 Dividimos el segmento de extremos A(1, 2), B(16, 12) en cinco partes iguales. Localiza mediante sus coordenadas los cuatro puntos de separación. Para ello, utiliza el vector $\overrightarrow{AB} = 1/5 \overrightarrow{AB}$.



PUNTO MEDIO DE UN SEGMENTO

M es el punto medio de \overrightarrow{AB} . Por tanto: $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB}$; $\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB}$

$$\begin{array}{c|c}
 & B(x_2, y_2) \\
A(x_1, y_1) & \overrightarrow{AB}(x_2 - x_1, y_2 - y_1) \\
\hline
O
\end{array}$$

Si $A(x_1, y_1)$ y $B(x_2, y_2)$, entonces:

$$\overrightarrow{OM} = (x_1, y_1) + \frac{1}{2}(x_2 - x_1, y_2 - y_1) = \left(x_1 + \frac{1}{2}x_2 - \frac{1}{2}x_1, y_1 + \frac{1}{2}y_2 - \frac{1}{2}y_1\right) = \left(\frac{1}{2}x_1 + \frac{1}{2}x_2, \frac{1}{2}y_1 + \frac{1}{2}y_2\right) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Las coordenadas del punto medio de un segmento son la semisuma de las coordenadas de sus extremos.

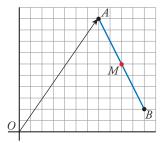
2. Un enfoque distinto: geometría analítica con vectores

Pág. 9 de 11

Aquí tienes dos ejemplos que te ayudarán a entender estos conceptos:

EJEMPLO 1

Hallar las coordenadas del punto medio del segmento de extremos A(7, 10), B(11, 2).



Obtención paso a paso:

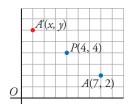
$$\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB} = (7, 10) + \frac{1}{2}(4, -8) = (7, 10) + (2, -4) = (9, 6)$$

Las coordenadas de M son, pues, (9, 6).

Obtención aplicando la fórmula:
$$M\left(\frac{7+11}{2}, \frac{10+2}{2}\right) = (9, 6)$$

EJEMPLO 2

Hallar las coordenadas del punto simétrico de A(7, 2) respecto de P(4, 4).



Si A' es el simétrico de A respecto de P, entonces P es el punto medio del segmento AA'. Por tanto, las coordenadas de P son la semisuma de las de A y A':

$$4 = \frac{x+7}{2} \rightarrow x = 1; \quad 4 = \frac{y+2}{2} \rightarrow y = 6$$

Las coordenadas de A' son (1, 6).

ACTIVIDADES

1 Halla las coordenadas del punto medio de los siguientes segmentos:

a)
$$A(-2, 5)$$
, $B(4, 1)$

b)
$$P(7, -3), Q(-5, 1)$$

c)
$$R(1, 4)$$
, $S(7, 2)$

d)
$$A(-3, 5)$$
, $B(4, 0)$

 $\bf 2$ Halla las coordenadas del punto simétrico de A respecto de P en los siguientes casos:

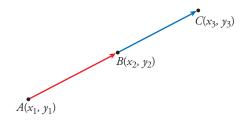
a)
$$A(4, -1)$$
, $P(-7, 2)$

b)
$$A(2, 4), P(5, -1)$$

2. Un enfoque distinto: geometría analítica con vectores

Pág. 10 de 11

COMPROBACIÓN DE SI TRES PUNTOS ESTÁN ALINEADOS



Los puntos A, B y C están alineados siempre que los vectores \overrightarrow{AB} y \overrightarrow{BC} tengan la misma dirección, y esto ocurre si sus coordenadas son proporcionales.

El símbolo // puesto entre dos vectores denota que son paralelos, es decir, que tienen la misma dirección.

A, B y C están alineados si \overrightarrow{AB} // \overrightarrow{BC} es decir, si $(x_2 - x_1, y_2 - y_1)$ son proporcionales a $(x_3 - x_2, y_3 - y_2)$. Esto es, si se cumple:

$$\frac{x_2 - x_1}{x_3 - x_2} = \frac{y_2 - y_1}{y_3 - y_2}$$

Por ejemplo:

EJEMPLO 1

Comprobar si los puntos A(2, -1), B(6, 1), C(8, 2) están alineados.

$$\overrightarrow{AB} = (6-2, 1-(-1)) = (4, 2)$$

 $\overrightarrow{BC} = (8-6, 2-1) = (2, 1)$ Las coordenadas son proporcionales, pues $2 \cdot (2, 1) = (4, 2)$.

Por tanto, $\overrightarrow{AB} / \overrightarrow{BC}$ y los puntos están alineados.

EJEMPLO 2

Averiguar el valor de m para que estén alineados los puntos P(1, 4), Q(5, -2), R(6, m).

$$\overrightarrow{PQ} = (4, -6)$$

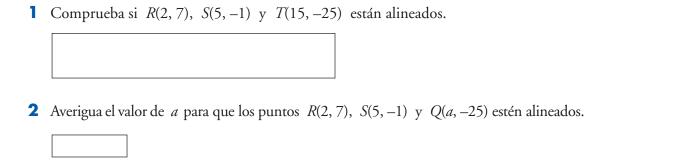
 $\overrightarrow{OR} = (1, m+2)$ $\left\{ \frac{4}{1} = \frac{-6}{m+2} \rightarrow m+2 = -\frac{6}{4} = -1, 5 \rightarrow m = -3, 5 \right\}$

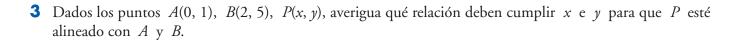
Para que P, Q, y R estén alineados, ha de ser m = -3.5.

2. Un enfoque distinto: geometría analítica con vectores

Pág. 11 de 11

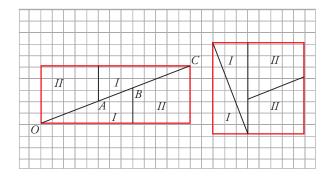
ACTIVIDADES





4 Averigua el valor de t para que A(1, 2), B(7, -11) y C(t, 2t) estén alineados.

5 En la figura siguiente ¿cómo es posible que el rectángulo, que tiene $5 \times 13 = 65$ cuadritos, se pueda descomponer en los mismos cuatro fragmentos que el cuadrado, que tiene $8 \times 8 = 64$ cuadritos?



El secreto está en que los puntos OABC no están alineados.

Compruébalo tomando O(0,0), A(5,2), B(8,3), C(13,5) y probando que el vector \overrightarrow{OA} no es paralelo al vector \overrightarrow{AB} .