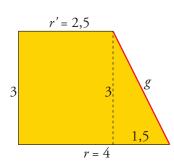

UNIDAD 9 Cuerpos geométricos


6. Refuerza: cálculo de la superficie de un tronco de cono

Pág. 1 de 3

1 Calcula la superficie total del siguiente tronco de cono (utiliza el valor $\pi = 3,14$ y, si es necesario, redondea a las centésimas):

Calculemos, primero, la generatriz, g, del tronco de cono:

$$g = \sqrt{\boxed{}} = \boxed{}$$
 cm

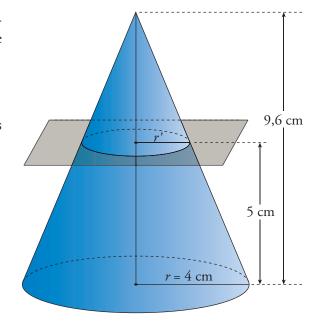
ÁREA LATERAL $\rightarrow A_L = \pi(r+r')g = -(-1) \cdot (-1) \cdot -(-1) \cdot (-1) \cdot ($

ÁREA DE LA BASE MAYOR $\rightarrow A_{BM} = \pi r^2 =$ cm^2

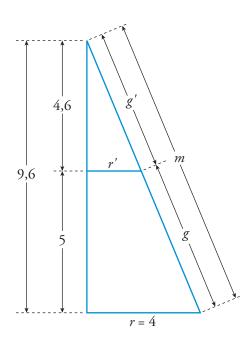
área base menor $\rightarrow A_{Bm} = \pi r'^2 =$ $\boxed{ }$ $\cdot \boxed{ }$ $^2 = \boxed{ }$ cm²

ÁREA TOTAL $\rightarrow A_T = A_L + A_{BM} + A_{Bm} =$ + = cm²

UNIDAD 9 Cuerpos geométricos


6. Refuerza: cálculo de la superficie de un tronco de cono

Pág. 2 de 3


2 Un cono que tiene 4 cm de radio en la base y 9,6 cm de altura se corta por un plano paralelo a la base que dista de ella 5 cm.

Halla el área del tronco de cono resultante.

(Utiliza el valor $\pi = 3,14$ y, si es necesario, redondea a las centésimas).

CÁLCULO DE LOS DATOS

— Generatriz, *m*, del cono grande:

$$m^2 = 9.6^2 +$$
 $\longrightarrow m = \sqrt{}$ = cm

— Generatriz, g', del cono pequeño:

$$\frac{g'}{m} = \frac{4.6}{9.6} \rightarrow g' = \frac{4.6}{9.6} =$$
 cm

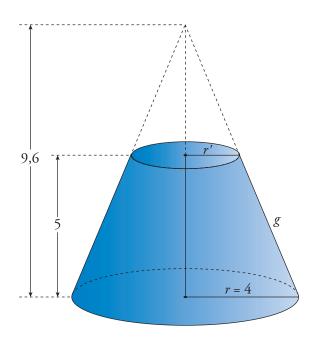
— Generatriz, g, del tronco de cono:

$$g = m - g' =$$
 $=$ cm

— Radio de la base menor del tronco de cono, r':

$$\frac{r'}{r} = \frac{4.6}{9.6} \rightarrow r' = \frac{ \cdot 4.6}{9.6} = \boxed{} \text{cm}$$

(CONTINÚA EN LA PÁGINA SIGUIENTE).


UNIDAD 9 Cuerpos geométricos

6. Refuerza: cálculo de la superficie de un tronco de cono

Pág. 3 de 3

CÁLCULO DE LA MEDIDA DE LA SUPERFICIE

$$r = 4 \text{ cm}$$

$$r' = 1,92 \text{ cm}$$

$$g = 5,42 \text{ cm}$$

ÁREA LATERAL
$$\rightarrow A_L = \pi(r + r')g =$$
 $\cdot ($ $+$ $) \cdot$ $=$ $-$ cm^2

ÁREA DE LA BASE MAYOR
$$\rightarrow A_{BM} = \pi r^2 =$$
 cm^2

área base menor
$$\rightarrow A_{Bm} = \pi r'^2 =$$
 $\boxed{ }$ \cdot $\boxed{ }$ $^2 =$ $\boxed{ }$ cm²

ÁREA TOTAL
$$\rightarrow$$
 $A_T = A_L + A_{BM} + A_{Bm} =$ + = cm²