14.1. Modelo 2013 - Opción A

Problema 14.1.1 (2 puntos) Discútase el sistema siguiente en función del parámetro $a \in R$:

$$\begin{cases} x - y &= a \\ x + & az = 0 \\ 2x - y + a^2z = 1 \end{cases}$$

Solución:

$$\begin{pmatrix} 1 & -1 & 0 & a \\ 1 & 0 & a & 0 \\ 2 & -1 & a^2 & 1 \end{pmatrix}; |A| = a(a-1) = 0 \Longrightarrow a = 0, a = 1$$

- Si $a \neq 0$ y $a \neq 1 \Longrightarrow |A| \neq 0 \Longrightarrow \operatorname{Rango}(A) = 3 = \operatorname{Rango}(\overline{A}) = n^{\circ}$ de incógnitas \Longrightarrow Sistema compatible determinado (solución única).
- Si a = 0:

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 1 \end{pmatrix}; |A| = 0 \text{ y } \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} = 1 \neq 0 \Longrightarrow \operatorname{Rango}(A) = 2$$

$$\begin{vmatrix} 1 & -1 & 0 \\ 1 & 0 & 0 \\ 2 & -1 & 1 \end{vmatrix} = 1 \neq 0 \Longrightarrow \operatorname{Rango}(\overline{A}) = 3$$

Como los rangos son distintos el sistema es incompatible (No tiene solución)

• Si a = 1:

$$\begin{pmatrix} 1 & -1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 2 & -1 & 1 & 1 \end{pmatrix}; F_3 = F_1 + F_2 \text{ y } \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} = 1 \neq 0 \Longrightarrow$$

 $\operatorname{Rango}(A) = 2 = \operatorname{Rango}(\overline{A}) < n^{\circ}$ de incógnitas \Longrightarrow sistema compatible indeterminado (Infinitas soluciones)

Problema 14.1.2 (2 puntos) Dada la función real de variable real $f(x) = \frac{3x^2 - 5}{x + 1}$

- a) Hállense sus asíntotas horizontales, verticales y oblícuas.
- b) Hállense los puntos de corte de la gráfica de f con los ejes de coordenadas y sus intervalos de crecimiento y decrecimiento.

Solución:

a) • Verticales: x = -1:

$$\lim_{x\longrightarrow -1^{-}}\frac{3x^{2}-5}{x+1}=\left[\frac{-2}{0^{-}}\right]=+\infty$$

$$\lim_{x\longrightarrow -1^+}\frac{3x^2-5}{x+1}=\left[\frac{-2}{0^+}\right]=-\infty$$

Horizontales: No hay

$$\lim_{x \to \infty} \frac{3x^2 - 5}{x + 1} = +\infty$$

• Oblicuas: y = mx - n

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{3x^2 - 5}{x^2 + x} = 3$$

$$n = \lim_{x \to \infty} (f(x) - mx) = \lim_{x \to \infty} \left(\frac{3x^2 - 5}{x + 1} - 3x \right) = \lim_{x \to \infty} \frac{-3x - 5}{x + 1} = -3$$

$$y = 3x - 3$$

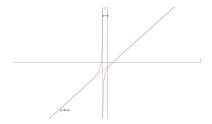
b) • Puntos de corte:

Con el eje OY: hacemos $x = 0 \Longrightarrow (0, -5)$ Con el eje OX: hacemos $f(x) = 0 \Longrightarrow (-\sqrt{5/3}, 0)$ y $(\sqrt{5/3}, 0)$

• Curvatura:

$$f'(x) = 3x^2 + 6x + 5(x+1)^2 \neq 0 \Longrightarrow$$
 no hay extremos

Como f'(x) > 0 siempre podemos asegurar que la función es creciente en todo el dominio $R - \{0\}$.



Problema 14.1.3 (2 puntos) Dada la función real de variable real

$$f(x) = \begin{cases} -x^2 - 3x + 5 & \text{si } x \le 1\\ x^2 & \text{si } x > 1 \end{cases}$$

- a) Estúdiese la continuidad de la función en R.
- b) Calcúlese $\int_0^2 f(x) dx$

Solución:

a)
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (-x^{2} - 3x + 5) = 1$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x^{2} = 1$$

Luego la función es continua en x = 1 por ser iguales los límites laterales y además f(1) = 1.

b)
$$\int_0^2 f(x) dx = \int_0^1 (-x^2 - 3x + 5) dx + \int_1^2 x^2 dx = \frac{-x^3}{3} - 3\frac{x^2}{2} + 5x \Big|_0^1 + \frac{x^3}{3} \Big|_1^2 = \frac{19}{6} + \frac{7}{3} = \frac{11}{2}$$

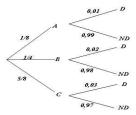
Problema 14.1.4 (2 puntos) Tres máquinas A, B y C fabrican tornillos del mismo tipo. La probabilidad de que un tornillo fabricado en la máquina A sea defectuoso es 0,01, de que lo sea uno fabricado en B es 0,02 y de que lo sea si ha sido manufacturado en C es 0,03. En una caja se mezclan 120 tornillos: 15 de la máquina A, 30 de la B y 75 de la C.

- a) Calcúlese la probabilidad de que un tornillo elegido al azar no sea defectuoso.
- b) Elegido un tornillo al azar resulta defectuoso. ¿Cuál es la probabilidad de que haya sido fabricado por la máquina B?

Solución:

$$P(D|A) = 0,01, \quad P(D|B) = 0,02, \quad P(D|C) = 0,03$$

 $P(A) = \frac{15}{120} = \frac{1}{8}, \quad P(B) = \frac{30}{120} = \frac{1}{4}, \quad P(C) = \frac{75}{120} = \frac{5}{8}$



a)
$$P(ND) = \frac{1}{8} \cdot 0.99 + \frac{1}{4} \cdot 0.98 + \frac{5}{8} \cdot 0.97 = 0.975$$

b)
$$P(B|D) = \frac{P(D|B)P(B)}{P(D)} = \frac{0.02 \cdot 0.25}{1 - 0.975} = 0.2$$

Problema 14.1.5 (2 puntos) El peso en gramos del contenido de las cajas de cereales de una cierta marca se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica igual a 5 gramos. Se toma una muestra de tamaño 144.

- a) Calcúlese la probabilidad de que el valor absoluto de la diferencia entre la media de la muestra y μ sea menor de 1 gramo.
- b) Si la media muestral obtenida es igual a 499,5 gramos, determínese un intervalo de confianza con un nivel del 90 % para el peso medio de ese tipo de cajas de cereales.

Solución:

a) Tenemos E = 1, $\sigma = 5$ y n = 144

$$E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \Longrightarrow z_{\alpha/2} = \frac{E \cdot \sqrt{n}}{\sigma} = 2,4$$

$$P(Z < 2,4) = 0.9918$$

b) Tenemos $\overline{x}=499.5,\,\sigma=5,\,n=144$ y $z_{\alpha/2}=1.645$

$$IC = \left(\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = (498,8146,500,1854)$$

14.2. Modelo 2013 - Opción B

Problema 14.2.1 (2 puntos)

a) Determínense los valores de a y b para que la función objetivo F(x,y)=3x+y alcance su valor máximo en el punto (6,3) de la región factible definida por

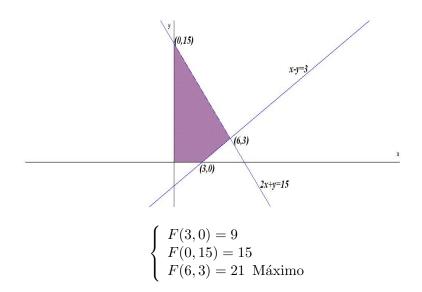
$$\begin{cases} x \ge 0 \\ y \ge 0 \\ x + ay \le 3 \\ 2x + y \le b \end{cases}$$

b) Represéntese la región factible para esos valores y calcúlense las coordenadas de todos sus vértices.

Solución:

a)
$$\begin{cases} x + ay = 3 \\ 2x + y = b \end{cases} \implies \begin{cases} 6 + 3a = 3 \\ 12 + 3 = b \end{cases} \implies \begin{cases} a = -1 \\ b = 15 \end{cases}$$

b) Representación:



Problema 14.2.2 (2 puntos) Sea la matriz $A = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$

a) Obténgase A^{2007} .

b) Hállese la matriz Btal que $A\cdot B=\left(\begin{array}{ccc}11&5&1\\-7&-3&0\end{array}\right)$

Solución:

a)

$$A^{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \Longrightarrow A^{n} \begin{cases} A & \text{si } n \text{ es impar} \\ I & \text{si } n \text{ es par} \end{cases} \Longrightarrow A^{2007} = A$$

b) $A \cdot B = C \Longrightarrow B = A^{-1}C$:

$$A^{-1} = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$$

$$B = A^{-1}C = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 11 & 5 & 1 \\ -7 & -3 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 \\ 3 & 1 & -1 \end{pmatrix}$$

Problema 14.2.3 (2 puntos) El coste de fabricación de una serie de hornos microondas viene dado por la función $C(x) = x^2 + 40x + 30000$; donde x representa el número de hornos fabricados. Supongamos que cada horno se vende por 490 euros.

- a) Determínese la función de beneficios.
- b) ¿Cuántos microondas deben fabricarse y venderse para que los beneficios sean máximos? ¿Cuál es el importe de esos beneficios máximos?

Solución:

a) Si llamamos x al número de hornos vendidos la función beneficio será:

$$B(x) = 490x - (x^2 + 40x + 30000) = -x^2 + 450x - 30000$$

b) $B'(x) = -2x + 450 = 0 \implies x = 225$

 $B''(x) = -2 \Longrightarrow B''(225) = -2 < 0 \Longrightarrow$ en x = 225 hay un máximo. El beneficio máximo se obtiene al venderse 225 hornos y sería de B(225) = 20625 euros.

Problema 14.2.4 (2 puntos) Sean A y B dos sucesos aleatorios tales que

$$P(A) = \frac{1}{2}, \ P(\overline{B}) = \frac{3}{4}, \ P(A \cup B) = \frac{2}{3}$$

- a) Determínese si son compatibles o incompatibles los sucesos A y B.
- b) Determínese si son dependientes o independientes los sucesos A y B.

Nota: \overline{S} denota al suceso complementario del suceso S.

Solución:

- a) $P(A \cup B) = P(A) + P(B) P(A \cap B) \Longrightarrow P(A \cap B) = \frac{1}{2} + \frac{1}{4} \frac{2}{3} = \frac{1}{12} \neq 0 \Longrightarrow$ los sucesos $A \lor B$ son compatibles.
- b) $P(A \cap B) = \frac{1}{12} \neq P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} \Longrightarrow \text{ los sucesos } A \neq B \text{ no son independentes.}$

Problema 14.2.5 (2 puntos) La altura de los árboles de una determinada comarca se puede aproximar por una variable aleatoria con distribución normal de media desconocida y varianza 25 cm. Se toma una muestra aleatoria simple y, para un nivel de confianza del 95 %, se construye un intervalo de confianza para la media poblacional cuya amplitud es de 2,45 cm.

- a) Determínese el tamaño de la muestra seleccionada.
- b) Determínese el límite superior y el inferior del intervalo de confianza si la altura media para la muestra seleccionada fue de 170 cm.

Solución:

$$N(\mu, 5); \quad z_{\alpha/2} = 1,96; \quad E = \frac{2,45}{2} = 1,225$$

a)
$$E=z_{\alpha/2}\frac{\sigma}{\sqrt{n}} \Longrightarrow n \simeq \left(\frac{1{,}96\cdot 5}{1{,}225}\right)^2 = 64 \Longrightarrow n=64$$

b) Tenemos $\bar{x} = 170, E = 1{,}225 \text{ y } n = 144$

$$IC = (\overline{x} - E, \overline{x} + E) = (168,775; 171,225)$$