16.3. Junio 2015 - Opción A

Problema 16.3.1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} 3x + y - z = 8 \\ 2x + az = 3 \\ x + y + z = 2 \end{cases}$$

- a) Discútase en función de los valores del parámetro a.
- b) Resuélvase para a = 1.

Solución:

a)

$$\overline{A} = \begin{pmatrix} 3 & 1 & -1 & | & 8 \\ 2 & 0 & a & | & 3 \\ 1 & 1 & 1 & | & 2 \end{pmatrix}; \quad |A| = -2a - 4 = 0 \Longrightarrow a = -2$$

- Si $a \neq -2 \Longrightarrow |A| \neq 0 \Longrightarrow \operatorname{Rango}(A) = 3 = \operatorname{Rango}(\overline{A}) = n^{\circ}$ de incógnitas y el sistema es compatible determinado. (Solución única)
- Si a = -2:

$$\overline{A} = \begin{pmatrix} 3 & 1 & -1 & | & 8 \\ 2 & 0 & -2 & | & 3 \\ 1 & 1 & 1 & | & 2 \end{pmatrix}; |A| = 0, \begin{vmatrix} 3 & 1 \\ 2 & 0 \end{vmatrix} = -2 \neq 0 \Longrightarrow \operatorname{Rango}(A) = 2$$

$$\begin{vmatrix} 3 & 1 & 8 \\ 2 & 0 & 3 \\ 1 & 1 & 2 \end{vmatrix} = 6 \neq 0 \Longrightarrow \operatorname{Rango}(\overline{A}) = 3$$

Como Rango(A) \neq Rango(\overline{A}) \Longrightarrow el sistema es incompatible (no tiene solución)

b) Si a = 1:

$$\begin{cases} 3x + y - z = 8 \\ 2x + z = 3 \\ x + y + z = 2 \end{cases} \implies \begin{cases} x = 2 \\ y = 1 \\ z = -1 \end{cases}$$

Problema 16.3.2 (2 puntos) Sabiendo que la derivada de una función real de variable real f es

$$f'(x) = 3x^2 + 2x$$

- a) Calcúlese la expresión de f(x) sabiendo que su gráfica pasa por el punto (1,4).
- b) Calcúlese la ecuación de la recta tangente a la gráfica de la función f en el punto (1,4).

Solución:

a)
$$f(x) = \int (3x^2 + 2x) dx = x^3 + x^2 + C$$
:
 $f(1) = 4 \Longrightarrow 2 + C = 4 \Longrightarrow C = 2 \Longrightarrow f(x) = x^3 + x^2 + 2$

b)
$$b = f(1) = 4, \quad m = f'(1) = 5, \Longrightarrow y - 4 = 5(x - 1)$$

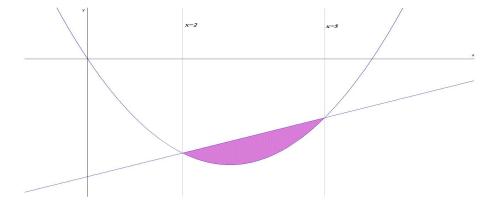
Problema 16.3.3 (2 puntos) Sean las funciones reales de variable real

$$f(x) = x^2 - 6x$$
, $g(x) = x - 10$

- a) Represéntense gráficamente las funciones f y g.
- b) Calcúlese el área del recinto plano acotado por las gráficas de las funciones $f \ y \ g$.

Solución:

a) Gráfica:



b)
$$x^2 - 6x = x - 10 \Longrightarrow x = 2 \text{ y } x = 5.$$

$$F(x) = \int (f(x) - g(x)) dx = \int (x^2 - 7x + 10) dx = \frac{x^3}{3} - \frac{7x^2}{2} + 10x$$

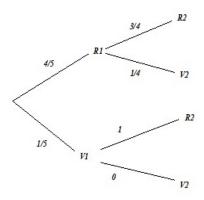
$$S_1 = \int_2^5 (f(x) - g(x)) dx = F(5) - F(2) = -\frac{9}{2}$$

$$S = |S_1| = \left| -\frac{9}{2} \right| = \frac{9}{2} u^2$$

Problema 16.3.4 (2 puntos) En una bolsa hay cuatro bolas rojas y una verde. Se extraen de forma consecutiva y sin reemplazamiento dos bolas. Calcúlese la probabilidad de que:

- a) Las dos bolas sean del mismo color.
- b) La primera bola haya sido verde si la segunda bola extraída es roja.

Solución:



a) $P(mismo\ color) = P(R1)P(R2|R1) + P(V1)P(V2|V1) = \frac{4}{5} \cdot \frac{3}{4} + \frac{1}{5} \cdot 0 = \frac{3}{5}$

b)
$$P(V1|R2) = \frac{P(R2|V1)P(V1)}{P(R2)} = \frac{1 \cdot \frac{1}{5}}{\frac{4}{5} \cdot \frac{3}{4} + \frac{1}{5} \cdot 1} = \frac{1}{4}$$

Problema 16.3.5 (2 puntos) El tiempo de reacción ante un obstaculo imprevisto de los conductores de automóviles de un pais, en milisegundos (ms), se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica $\sigma = 250 \ ms$.

- a) Se toma una muestra aleatoria simple y se obtiene un intervalo de confianza (701;799), expresado en ms, para μ con un nivel del 95%. Calcúlese la media muestral y el tamaño de la muestra elegida.
- b) Se toma una muestra aleatoria simple de tamaño 25. Calcúlese el error máximo cometido en la estimación de μ mediante la media muestral con un nivel de confianza del 80 %.

Solución:

a) Tenemos
$$z_{\alpha/2}=1,96$$
 e $IC=(701;799)\Longrightarrow \left\{\begin{array}{l} \overline{X}-E=701\\ \overline{X}+E=799\end{array}\right.\Longrightarrow \left\{\begin{array}{l} \overline{X}=750\\ E=49\end{array}\right.$

$$E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \Longrightarrow 49 = 1,96 \frac{250}{\sqrt{n}} \Longrightarrow n = 100$$

b) $z_{\alpha/2} = 1,285;$

$$E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 1,285 \frac{250}{\sqrt{25}} = 64,25$$

16.4. Junio 2015 - Opción B

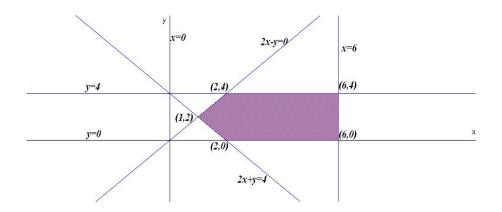
Problema 16.4.1 (2 puntos) Una fábrica de piensos para animales produce diariamente como mucho seis toneladas de pienso del tipo A y como máximo cuatro toneladas de pienso del tipo B. Además, la producción diaria de pienso del tipo B no puede superar el doble de la del tipo A y, por último, el doble de la fabricación de pienso del tipo A sumada con la del tipo B debe ser como poco cuatro toneladas diarias. Teniendo en cuenta que el coste de fabricación de una tonelada de pienso del tipo A es de 1000 euros y el de una tonelada del tipo B de 2000 euros, ¿cuál es la producción diaria para que la fábrica cumpla con sus obligaciones con un coste mínimo? Calcúlese dicho coste diario mínimo.

Solución:

L Lamamos x: toneladas de pienso A e y: toneladas de pienso B. Se trata de un problema de programación, hay que optimizar la función objetivo z(x,y) = 1000x + 2000y calculando su mínimo, sujeto a las restricciones (Región factible):

$$S: \begin{cases} x \le 6 \\ y \le 4 \\ y \le 2x \Longrightarrow 2x - y \ge 0 \\ 2x + y \ge 4 \\ x, y \ge 0 \end{cases}$$

La región S pedida será:



Los vértices a estudiar serán: (2,0), (6,0), (6,4), (2,4) y (1,2):

$$\begin{cases} z(2,0) = 2000 \text{ Minimo} \\ z(6,0) = 6000 \\ z(6,4) = 14000 \\ z(2,4) = 10000 \\ z(1,2) = 5000 \end{cases}$$

El coste mínimo es de 2000 euros y se alcanza produciendo 2 toneladas de pienso A y ninguna del tipo B.

Problema 16.4.2 (2 puntos) Sea la matriz

$$A = \left(\begin{array}{rrr} 2 & 2 & 0 \\ 0 & 3 & 2 \\ -1 & k & 2 \end{array}\right)$$

- a) Estúdiese el rango de A según los valores del parámetro real k.
- b) Calcúlese, si existe, la matriz inversa de A para k=3.

Solución:

a)
$$|A| = 0 \Longrightarrow 8 - 4k = 0 \Longrightarrow k = 2$$
.
Si $k \neq 2 \Longrightarrow |A| \neq 0 \Longrightarrow \operatorname{Rango}(A) = 3$.
Si $k = 2$:

$$A = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 3 & 2 \\ -1 & 2 & 2 \end{pmatrix}; |A| = 0, \ y \begin{vmatrix} 2 & 2 \\ 0 & 3 \end{vmatrix} = 6 \neq 0 \Longrightarrow \operatorname{Rango}(A) = 2$$

b) k = 3:

$$A = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 3 & 2 \\ -1 & 3 & 2 \end{pmatrix} \Longrightarrow A^{-1} = \begin{pmatrix} 0 & 1 & -1 \\ 1/2 & -1 & 1 \\ -3/4 & 2 & -3/2 \end{pmatrix}$$

Problema 16.4.3 (2 puntos) Se considera la función real de variable real definida por $f(x) = \begin{cases} \frac{x^2-4}{x^2-5x+6} & \text{si} \quad x<2\\ 3x+m & \text{si} \quad x\geq 2 \end{cases}$

- a) Calcúlese el valor del parámetro real m para que la función f sea continua en x=2.
- b) Calcúlese $\lim_{x \to -\infty} f(x)$ y $\lim_{x \to +\infty} f(x)$.

Solución:

a) Para que f sea continua en x = 2:

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{x^{2} - 4}{x^{2} - 5x + 6} = -4$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (3x + m) = 6 + m$$

$$6 + m = -4 \Longrightarrow m = -10$$

b)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2 - 4}{x^2 - 5x + 6} = 1$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x + m) = \infty$$

Problema 16.4.4 (2 puntos) Sean A y B sucesos de un experimento aleatorio tales que $P(A \cap B) = 0, 3$; $P(A \cap \overline{B}) = 0, 2$; P(B) = 0, 7. Calcúlense:

- a) $P(A \cup B)$:
- b) $P(B|\overline{A})$.

Nota: \overline{S} denota al suceso complementario del suceso S. Solución:

a)
$$\begin{cases} P(A \cup B) = P(A) + P(B) - P(A \cap B) \\ P(A \cap \overline{B}) = P(A) - P(A \cap B) \end{cases} \implies$$

$$P(A \cup B) = P(A \cap \overline{B}) + P(B) = 0, 2 + 0, 7 = 0, 9$$

b)
$$P(A) = P(A \cap \overline{B}) + P(A \cap B) = 0, 2 + 0, 3 = 0, 5$$

$$P(B|\overline{A}) = \frac{P(B \cap \overline{A})}{P(\overline{A})} = \frac{P(B) - P(A \cap B)}{1 - P(A)} = \frac{0, 7 - 0, 3}{1 - 0, 5} = 0, 8$$

Problema 16.4.5 (2 puntos) La duración de cierto componente electrónico, en horas (h), se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica igual a 1000 h.

- a) Se ha tomado una muestra aleatoria simple de esos componentes electrónicos de tamaño 81 y la media muestral de su duración ha sido $\overline{x} = 8000h$. Calcúlese un intervalo de confianza al 99 % para μ .
- b) ¿Cuál es la probabilidad de que la media muestral este comprendida entre 7904 y 8296 horas para una muestra aleatoria simple de tamaño 100 si sabemos que $\mu=8100h$?

Solución:

a) Tenemos
$$\overline{X}=8000,\ \sigma=1000,\ n=81\ \text{y}\ z_{\alpha/2}=2,575$$
:
$$IC=(\overline{X}-E,\overline{X}+E)=(7713,89;8286,11)$$

$$E=z_{\alpha/2}\frac{\sigma}{\sqrt{n}}=2,575\frac{1000}{\sqrt{81}}=286,11$$

b)
$$\overline{X} \approx N\left(8100, \frac{1000}{\sqrt{100}}\right) = N(8100; 100)$$

$$P(7904 \le \overline{X} \le 8296) = P\left(\frac{7904 - 8100}{100} \le Z \le \frac{8296 - 8100}{100}\right) = P(-1, 96 \le Z \le 1, 96)) = P(Z \le 1, 96) - P(Z \le -1, 96) = P(Z \le 1, 96) - (1 - P(Z \le 1, 96)) = 2P(Z \le 1, 96) - 1 = 0, 95$$